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on transition state theory lead to the postulate of the diyl as an 
intermediate must be addressed by their proponents. It may 
be conceivable that a symmetrical, delocalized species is an 
intermediate in the 3,3 shift, but this would represent a unique 
situation not previously considered in hydrocarbon thermal 
isomerizations. 

It should also be noted that MINDO calculations11 and 
Mclver's rules12 predict an unsymmetrical transition state in 
the Diels-Alder reaction, but Thornton's multiplicative deu
terium kinetic isotope effects in a retro-Diels-Alder reaction 
suggest a symmetrical transition state.13-14 

Finally, the notion that substitution at various positions can 
alter the geometry of the transition state in any 3,3 shift is an 
important one which rationalizes not only the increase in rate 
of 2- and 2,5-phenyl materials but the rate increases owing to 
substitution at C3 and C4. These transition-state changes are 
also reflected by secondary deuterium kinetic isotope ef
fects.15'16 
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Variable Transition-State Structure in the Cope 
Rearrangement as Deduced from Secondary 
Deuterium Kinetic Isotope Effects 

Sir: 
An accompanying communication demonstrates that the 

3,3 shift in 1,5-hexadiene (the Cope rearrangement) does not 
proceed via cyclohexane-l,4-diyl, but by the only alternative 
yet proposed, namely, a concerted reaction via a single tran
sition state in which there is partial bonding between C) and 
C6 and between C3 and C4.' While the gross geometry of this 
transition state has been demonstrated by Doering and Roth 
and by Hill to be a "chair",2 the question of the magnitude of 

c ^ - 0 
the partial bonds between the allylic moieties still must be re
solved. While we cannot answer this question in an absolute 
sense, previous work with substituted materials, herein further 
elaborated with secondary deuterium kinetic isotope effects 
(KIE's), suggests a dramatic change in the magnitudes of these 
partial bonds as a function of substituents. 

It is well known that good radical-stabilizing substituents 
not only on C3 and C4 but on C2 and C5 of 1,5-hexadiene ac
celerate the/rate of thej 3,3 shift.4!lnithe|former|case the rate 
response suggests that the transition state more resembles two 
allyl radicals, while in the latter case it more resembles cy-
clohexane-l,4-diyl. Indeed, these two extremes represent, to 
a first approximation, the range of transition-state structures 
available to the 3,3 shift.4b These two extremes represent a 
range of weak to large coupling of two allyl radicals. A con
venient representational device to depict this range of transi
tion-state structures is a More O'Ferrall-Jencks diagram5 

whose structural axes are the C1-C6 and the C3-C4 bond or
ders.466 The free-energy coordinate might be represented by 
contours which are best not included for sake of clarity. 
However, the relative free energies of the extremes with respect 
to 1,5-hexadiene, at 200 0C, can be guessed to a crude ap
proximation from group additivities.7 It is also true that the 
transition-state free-energy for diyl cleavage is 53 kcal/mol 
above 1,5-hexadiene;1 so a high-energy ridge surrounds the diyl 
but the exact location of the ridge is unknown. 

Within the context of this diagram and discussions sur
rounding it, stabilization of either of the radical extremes 
should draw the transition-state structure toward the more 
stable alternative,5 and so secondary deuterium KIE's, which 
respond primarily to changes in force constants which to first 
approximation reflect bonding changes, ought to reveal these 
changes.8 

The KIE's at C4 and C6 in the irreversible rearrangement 
of a l,2-dialkyl-3,3-dicyano-1,5-hexadiene have been deter
mined, and the normal KIE at C4 is three times the inverse KIE 
at C6.

9 In work described below the normal KIE at C3 and C4 
in nearly unperturbed acyclic systems is roughly one half to 
two thirds that of the inverse KIE at Ci and C6, while in 2-
phenyl-1,5-hexadiene the normal KIE at C3 and C4 is roughly 
one third of the inverse KIE at Ci and C6. Finally, the normal 
KIE at C3 and C4 of 2,5-diphenyl- 1,5-hexadiene is roughly one 
eighth of the inverse KIE at Ci and C6. Thus the transition-
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Table I. Secondary Deuterium KIE's in Various 3,3 Shifts" 

fcH/fe4-D2= j 1 9 6 
A.6-D2/J.H = 1 0 6 6 

,(D,) fe,DVfciH= 1.13 ±0.018 
'(D2) k2

H/k2
D'= 1.07 ±0.025 

i<D2) k3
Dt/k3

H= 1.156 ±0.024 
'(D2) fc4

H/A:4D4= 1-07 ±0.032 

0(D2) ksD*/kiH= 1.296 ±0.003 
(D2) k6

H/k(P*= 1.09 ±0.02 

,(D2) fc7
DVfc7H= 1-18 ±0.017'' 

(D2) A:8
H/(t8

D» = 1.155 ±0.023c 

,(D,) k9
D*/k9

H = 1.57 ±0.035 
(D2) Jt,oH/fcioD* = 1.07 ± 0.024 

a The standard deviations were determined as indicated in footnote 
12. * Reference 9.c Despite the favorable error analysis, we have no 
confidence in these since k^ and k% are only Vio_1/3oth of k$ and k6. 
Large variations in k-i or Zc8 will affect the calculated concentrations 
much less than similar variations in Zc5 and fcg. 

state structures, as deduced by changes in the relative KIE's, 
vary as predicted above.10 

The KIE's are shown in Table I; the rate constants for the 
three-component reversible reactions were determined by a 
siMPLEX1,a'b fit to the data using the integrated rate ex
pressions of Frey and Solly.1 lc Each reaction was sampled 
roughly 12 times and each sample was analyzed at least 4 times 
using GC and an electronic integrator giving reproducibility 
of ±1%. The diphenyl-l,5-hexadiene reaction was monitored 
by HR-220 1H NMR spectroscopy which gave reproducibility 
in integrations of ±1%. 

Since no functional relationship between secondary KIE's 
and bond-order changes is available, the absolute location of 
the various transition states on the diagram are unknown. 
However, if the relationship is nearly linear,13 then the be
havior of most degenerate 3,3 shifts can be reasonably ra
tionalized,14 recognizing that the transition states should re
semble the nonconcerted alternative, i.e., two allyl radicals or 
cyclohexane-1,4-diyl, that is more stable. 
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An Unusual Xenon Cation Containing 
Xenon-Nitrogen Bonds 

Sir: 

The earlier synthesis of FXeN(SO2F)2
1 from XeF2 and 

HN(SO2F)2 demonstrated that xenon was capable of forming 
bonds to elements other than oxygen and fluorine under ordi
nary laboratory conditions. Since this report there have been 
no further examples of new compounds of this type. We have 
been working to provide additional examples of xenon-nitrogen 
bonds and to prepare the first xenon-carbon bond. Recently, 
we have been successful in the preparation of several new 
xenon-nitrogen species, thus eliminating the possibility that 
FXeN(SO2F)2 is unique. This work describes one of these new 
compounds, an unusual complex salt containing a dinuclear 
xenon cation with xenon-nitrogen bonds. 

After the synthesis of FXeN(SO2F)2, we looked for ways 
to further identify the xenon-nitrogen bond. Because the 
xenon-fluorine bond in FXeN(SO2F)2 appears to be very 
similar to that in XeF2, the canonical form FXe+N(SO2F)2

-

does not appear to dominate the bonding. It therefore seemed 
reasonable that FXeN(SO2F)2 might react with a strong Lewis 
acid, such as AsFs, in the following way: 

FXeN(SO2F)2 + AsF5 — (FO2S)2NXe+AsF6" 

A 1:1 adduct is indeed formed, but it is unstable and we have 
been unable to determine its structure. We have found that the 
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